MCMC Fall 2025 Advanced Answer Key

Written by: R. Yeole, A. Wang Administered by: MCMC Team

1 Speed

- 1. 0
- 2. 168
- 3. 0
- 4. 1000
- 5. $2\sqrt{314}$
- 6. $\frac{288}{455}$
- 7. $\frac{15}{2}$
- 8. $\frac{7411}{9520}$
- 9. $\pi 2$
- 10. 1800
- 11. $2\sqrt{5}$
- 12. 17
- 13. 7
- 14. 3439
- 15. 2
- 16. 995
- 17. 1
- 18. 40000
- 19. 6
- 20. 0

2 Accuracy

- 1. A
- 2. C
- 3. A
- 4. E
- 5. D
- 6. B
- 7. A
- 8. A
- 9. C
- 10. C
- 11. B
- 12. D
- 13. B
- 14. E
- 15. A
- 16. E
- 17. B
- 18. B
- 19. C
- 20. C

Free Response Questions: Introduction to Graph Theory

Definitions in Graph Theory

Graph: A graph G is defined as an ordered pair G = (V, E), where V is a set of vertices (or nodes) and E is a set of edges (or links), which are two-element subsets of V.

Simple Graph: A simple graph is a graph in which all edges are undirected (the edge (u, v) is the same as (v, u)) and there are no loops (edges that connect a vertex to itself).

Adjacent: Two vertices u and v are considered adjacent if they are joined by an edge.

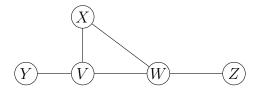
Degree of a Vertex: The degree of a vertex v, denoted d(v), is the number of vertices adjacent to it.

Path: A path is a sequence of edges that allows you to travel from a starting vertex u to an ending vertex v. The length of a path is the number of edges it contains.

Connected Graph: A graph is connected if for every pair of vertices (u, v) in the graph, there exists a path between them.

Problems

Consider the graph G below for parts (a) and (b).



(a) Find the degree d(v) for each vertex in the graph G.

$$d(V) = 3$$
 (connected to W , X , and Y)
 $d(W) = 3$ (connected to V , X , and Z)
 $d(X) = 2$ (connected to V and W)
 $d(Y) = 1$ (connected only to V)
 $d(Z) = 1$ (connected only to W)

(b) Is graph G connected? Explain your reasoning.

Yes, graph G is connected. For every pair of vertices (u, v), there exists a path connecting them. For example, even though Y is only adjacent to V and Z is only adjacent to W, we can travel from Y to Z via the path $Y \to V \to W \to Z$. Thus, the graph is connected.

(c) Let H be a simple graph where every vertex has degree k, with $k \geq 2$. Prove that H must contain a path of length at least k.

Proof: Let H be a k-regular graph, meaning every vertex has degree k. Choose any vertex v_0 . Starting from v_0 , since it has k neighbors, we can construct a path by successively visiting new vertices. Because each vertex has degree $k \geq 2$, we can always continue the path until no new vertex remains unvisited. By the handshaking lemma, H has at least k+1 vertices. Therefore, the graph contains a path of length at least k.